

Tutorial: Calculation of a two stage gearbox

このチュートリアルでは、平行軸システムを使って MESYS Shaft calculation の使用法を示します。 このプログラムを使用して2段階のギアボックスが定義されます。Shaft calculation のチュートリアル から始めて、単一シャフトの形状とサポート類をどのようにして組み込んで行くか理解してください。

System Data		1	
アロジェクト名 Length (Consulting Software Lag) 計算概要 two stage			
設定 潤滑油 画面設定			
☑ 重量を考虑		🔶 ハウジング材料	Steel 🗸 🖓
重力方向	β. –90	* ハウジング温度	Ть 20 ° С
✓ 固有振動数を計算		要求寿命	H 20000 h
□ ジャイロ効果の考慮		🕂 軸受信頼度	S 90 % 🗆
最大周波数	f _{max} 10000	Hz 強度計算	DIN 743による無限寿命 V
固有振動のモード数	Nifreq 10	軸受位置	各々軸受の設定 ~
□ 静的な平衡で動的荷重を考慮		せん断変形	According Hutchinson 🗸 🕂
□ 歯車を剛性として考慮		□ 非線形シャフトモデルを考	慮
□ 歯車を点荷重として考慮		□ 荷重スペクトルを考慮	
□ ハウジング剛性を考慮		🗌 修正軸受寿命を計算	
□ コンフィギュレーションを考慮			

特にシステムデータの値を変更する必要は、ありません。

Defining Shafts

Group 1 Group 2 Group 3

システムとして、平行シャフトグループを利用して行きます。 システムツリーでシャフトを右クリックして、<u>3つのグループを追加します</u>。 以下の3つのグループの名前を与えます。

System	8	- 4 3	System	
4 System			Shafts	
4 Shafts			Shaf	Add Shaft
▲ Group 1			Bearing	Add Group
Shaft1 Group 2 Shaft2				
Group 3		1		1
Shaft Bearings	Add Shaft Delete Group			T

MESYS Shaft Calculation - MESYS AG

File Calculation Report Graphics

243

今度は、各グループごとにシャフトを追加し、シャフト1からシャフト3と名付けます。

グループ	シャフト名	長さ	直径
Group 1	Shaft1	120	20
Group 2	Shaft2	100	25
Group 3	Shaft3	120	30

シャフトには以下の要素を追加します:

Shaft	Element	Name	Position	Parameters
Shaft1	Coupling	Input	10	Mx = 20Nm
	Gear	G1	55	mn=1, α=20, b=20, z=25
	Rolling bearing	B1	30	Deep groove ball bearing 6204
	Rolling bearing	B2	110	Deep groove ball bearing 6204
Shaft2	Gear	G2	35	mn=1, α=20, b=20, z=60
	Gear	G3	65	mn=1.5, α=20, b=25, z=20
	Rolling bearing	B3	10	Deep groove ball bearing 6205
	Rolling Bearing	B4	90	Deep groove ball bearing 6205
Shaft3	Gear	G4	65	mn=1.5, α=20, b=25, z=50
	Rolling bearing	B5	10	Deep groove ball bearing 6206
	Rolling bearing	B6	90	Deep groove ball bearing 6206
	Reaction coupling	Output	110	

各々のシャフトは、以下のようなイメージになります。

Defining gear connections

次のステップとして、<u>歯車間の接続を設定します</u>。これを選択するには、システムツリーで「Gear <u>connections</u>」を選択して、「円筒ギアペア」をクリックし、右の **小**ボタンで追加します。

MESYS Shaft Calculation - File Calculation Report	MESYS AG Graphics Extras H	lelp								
🗋 🧀 🖬 🚳 📑										
System 🗗	Cylindrical gear pa	airs	T1 [Nr	n]	T2 [Nm]	SF1	SF2	SH1	SH2	
✓ System	GearPair	•		-						
 Group 1 Shaft1 	Bevel gear pairs Worm gears		T1 [Nr T1 [Nr	n] n]	T2 [Nm] T2 [Nm]					
 ▲ Group 2 Shaft2 ▲ Group 3 										
Shaft3									11	
Bearings B1	Shaft	Shaft1	•	Shaft2	•			2		Ľz
Support	Gear	G1	-	32	•					z.ľ
Support B5	Position	55	3	35	mm					Ľx.
B6	Number of teeth	25	6	50				1	i i <u></u>	₽ _z x
Positioning Gear connections	Width	20		20	mm					₩ _Y ×
dear connections	Profile shift coefficient	0	()						Ľ×
	Normal module		mn	1	mm					R
	Normal pressure angle		an	20	•					R
	Helix angle		β	0	0					Ø
	<u></u>							ĥ		
Result overview										8
				_						141

ここで、<u>接続するシャフトとギヤを選択します</u>。最初のペアに <u>G1-G2</u>を接続し、2 番目のペアを追加 して <u>G3-G4</u>を接続します。円周方向のバックラッシュとギアメッシュの剛性はここで変更できます。後 で計算されるので、中心距離を入力する必要はありません。可能であれば、歯車強度計算の計算プロ グラムを選択することができます。

Define positioning

次のステップは、シャフトの位置決めを定義することです。このためには、システムツリーの 「Positioning」を選択します。

MESYS Shaft Calculation	- MESYS AG Graphics Extras Help		X
System System Shafts Group 1 Shaft1 Group 2 Shaft2 Group 3 Shaft3 Bearings	Group 'Group 2' according Group 'Group 3' according	gear pair 'G1-G2' gear pair 'G3-G4'	
B1 B2 Support Support B5 B6 Positioning ▷ Gear connections Result overview	Group according gear pair Group Cylindrical gear pair Offset in x-direction Angle	Group 2 G1-G2 dx 20 mm φ 0 °	117110 12 11 Q »

2つの拘束を ボタンを用いて追加します。いくつかの位置決めのオプションがあります。

'<u>ギアペアに合わせてグループ</u>'を選択し、<u>ペア'G1-G2 で"Group2'を配置、ペア'G3-G4'で'Group3'を配置</u>します。この例では、角度を変更することができ、0度にします。すべてのシャフトの垂直方向を取得します。

システムツリーで「Shafts」をクリックし、ビューの x-y 平面を選択します:

Ľ.2 2.1	
Ľx.	
izx ivx	
Ľ×	
ଜ ହ 🛛	

ベアリング間に衝突があることがわかります。「Gear connections」に戻って、モジュールを「G1-G2」の ペアを 1.25 に、「G3-G4」を 1.75 に変更します。 その後、ベアリング間のスペースは小さくなりますが、 衝突はありません。

Running the calculation

計算を実行する前に、システムの速度を定義する必要が あります。<u>'Shaft1'に 1000rpm の速度を入力します。</u> 他のすべてのシャフトでは、プログラムによって速度が計算さ れるため、速度の入力にあるフラグは設定しないでください。 計算を実行した後、結果の概要は次のようになります。

General	Geometry	Loading	Su	oports	
Name Sh	aft1				
Material		Steel			•
Position			х	0	mm
Speed			n	1000	rpm 🔽
Temperat.	ire		т	20	°C

						-
minL 10rh	5206.8	h	Minimal bearing modified reference life	minLomrh	2696.97	h
minSF	3.31313		Maximal bearing stress	pmax	2817.32	MPa
maxUx	0.00125648	mm	Maximal displacement in y	maxUy	0.0105804	mm
maxUz	0.0391698	mm	Maximal displacement in radial direction	maxUr	0.0395863	mm
minGearSF	3.0644	ĵ.	Minimal flank safety for gears	minGearSH	1.1457	1
maxSigV	45.3345	MPa	i			
	minL10rh minSF maxUx maxUz minGearSF maxSigV	minL10rh 5206.8 minSF 3,31313 maxUx 0.00125648 maxUz 0.0391698 minGearSF 3.0644 maxSigV 45,3345	minL10rh 5206.8 h minSF 3.31313 nm maxUx 0.00125648 mm maxUz 0.0391698 mm minGearSF 3.0644 MPa	minL 10rh 5206.8 h Minimal bearing modified reference life minSF 3.31313 Maximal bearing stress maxUx 0.00125648 mm Maximal displacement in y maxUz 0.0391698 mm Maximal displacement in radial direction minGearSF 3.0644 Minimal flank safety for gears maxSigV 45.3345 MPa	minL10rh 5206.8 h Minimal bearing modified reference life minLnmrh minSF 3.31313 Maximal bearing stress pmax maxUx 0.00125648 mm Maximal displacement in y maxUy maxUz 0.0391698 mm Maximal displacement in radial direction maxUr minGearSF 3.0644 Minimal flank safety for gears minGearSH maxSigV 45.3345 MPa	minL10rh 5206.8 h Minimal bearing modified reference life minLnmrh 2696.97 minSF 3.31313 Maximal bearing stress pmax 2817.32 maxUx 0.00125648 mm Maximal displacement in y maxUy 0.0105804 maxUz 0.0391698 mm Maximal displacement in radial direction maxUr 0.0395863 minGearSF 3.0644 Minimal flank safety for gears minGearSH 1.1457 maxSigV 45.3345 MPa Maximal flank safety for gears minGearSH 1.1457

歯車の安全係数は、選択した歯車計算プログラムに依存します。歯車の計算の詳細も入力しません。最小軸受寿命は 5200h、静的軸受安全率は 3.3 です。したがって、軸受に必要な寿命に依存するが、ベアリングは OK です。最小歯車の安全性はフランク面で 1.14、歯根元応力で 3 であるため、歯車も OK になります。

これにより、シャフトのジオメトリを詳細化し、ギアを最適化することができます。

Gear calculations (オプション)

歯車の計算には、'システム'ページの 'Required life'を定義する必要があります。 また、ギアに応じてシャフトの直径が自動的に増加する「ギアを剛性として考慮」か、 自分で歯車の剛性を軸のジオメトリに考慮する必要があります。 ギアの計算は、システムツリーでギアペアを選択することで開くことができます。歯

車計算プログラムに依存して、シャフト計算プログラム内または別のウィンドウとして開くことができま す。ギヤのパラメータは変更することができ、ギヤの計算を閉じる際に呼び込むことができます。 「ギア接続」ページには、各ギアのトルクとその安全係数が表示されています。「円筒ギアペア」を選択 すると、ギアペアデータの概要が表に示されます。

Graphics for gear pairs

ギアペアの2つのグラフィックスが利用可能です。ライン荷重とギャップ幅です。

ギャップ幅は、コンタクトがちょうど1点にある場合のフランク間のギャップを示します。したがって、 この場合、2μmのフランクライン補正を行うことができます。これらの図は、「歯車を剛性と考える」と

いう設定で作成されています。ギアメッシュの剛性、シャフトおよびベアリング剛性は、これらの図に影響します。しかし、製造誤差やハウジング剛性も実際のギアボックスに影響します。

Considering load spectra

荷重スペクトルはシステムに簡単に追加できます。<u>'System'ページで 'Load spectrum'を選択し、新しい</u> ページ 'Load spectrum'に行きます:

MESYS Shaft Calculation	on - MESYS A	AG - Tutorial	ShaftSyste	ems.xml			
File Calculation Repo	ort Graphi	cs Extras	Help				
🗋 🧀 📙 🚳							
System 🗗	ľ	Frequency	TOil [°C]	THousing [°C]	n (rpm)	T [°C]	Mx [N
 System Load spectrum 	Shaft				Shaft1	Shaft1	Shaft1
 Shafts Group 1 	Element				General	General	Input
Shaft1 Group 2 Shaft2 Group 3					Gen Shaf	eral 🕨	
Shaft3					Shaf Shaf	t2 + t3 +	L
B1 B2					Hide	All	

マウスの右ボタンを押し、「Hide All」を選択します。次に、マウスの右ボタンをもう一度押し、 <u>'Shaft1' - > 'General' - > n と 'Shaft1' - > 'Input' - > 'Mx'を選択します。</u>次に、下部に 🌵 button を 使用して 2 行を追加します。

	Frequency	n [rpm]	Mx [Nm]			
Shaft		Shaft1	Shaft1			
Element		General	Input			
1	0.7	1000	20			
2	0.3	500	30			
] Run cal	culation for re	sult eleme	nt only	Result element	1 🔄 🛟	= 😫
	<u> </u>					

度 500、トルク 30 の第 2 荷重ケースを追加します。

すべてのギヤとベアリングは荷重スペクトルを使用して計算されます。「ギヤ接続」ページには、各荷 重ケースのトルクと、全スペクトルの安全係数が表示されます。

Cylindrical gear pairs	T1 [Nm]	T2 [Nm]	SF1	SF2	SH1	SH2
▲ G1-G2	-	070	2.46	2.58	1.18	1.27
1	20.00	48.00				
2	30.00	72.00				
▲ G3-G4	*	5 - 5	2.26	2.46	1.02	1.14
1	-48.00	-120.00				
2	-72.00	-180.00				
Bevel gear pairs	T1 [Nm]	T2 [Nm]				
Worm gears	T1 [Nm]	T2 [Nm]				

歯車接続の追加のグラフィックスでは、すべての荷重ケースのライン荷重が表示されます。

